6.2: Cardinality

Definition 1. If A is a finite set, then its cardinality is the number of elements in A. We denote the cardinality by $n(A)$ or $|A|$.

Example 1.

(a) Let $S=\{a, b, c\}$. Then $|S|=3$.
(b) Let A be the set of outcomes when rolling one die. Then $n(A)=6$.

Cardinality of a Union

Question 1. How can we calculate $n(A \cup B)$ if we know $n(A)$ and $n(B)$? Give an initial guess and then try the next example.

Example 2. Let $A=\{a, b, c\}$ and $B=\{b, c, d\}$. Find $n(A), n(B)$ and $n(A \cup B)$. Was your guess correct? If not, what needs to be changed?

Cardinality of a Complement

Question 2. Let S be a finite universal set containing A. Give an initial guess for $n\left(A^{\prime}\right)$.

Example 3. Let S be the possible outcomes of rolling a single die. Let A be the subset of S which contains all rolls strictly greater than 2 . Find $n(A)$, $n(S)$ and $n\left(A^{\prime}\right)$. Was your guess correct?

Cardinality of a Cartesian Product

If A and B are sets, then $n(A \times B)=n(A) \cdot n(B)$.
Example 1. Let S be the sample space when rolling a single die. Let A be the event that an odd number is rolled.
(a) What is the cardinality of $S \times S$ and what does it represent?
(b) What is the cardinality of $A \times A$ and what does it represent?
(c) What is the cardinality of $S \times A$ and what does it represent?
$\underline{\text { DeMorgan's Laws Let } A_{1}, A_{2}, \ldots, A_{n} \text { be sets. }}$

1. $\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)^{\prime}=A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}$
2. $\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)^{\prime}=A_{1}^{\prime} \cup A_{2}^{\prime} \cup \cdots \cup A_{n}^{\prime}$
