Definition 1. If A is a finite set, then its cardinality is the number of elements in A. We denote the cardinality by n(A) or |A|.

Example 1.

- (a) Let $S = \{a, b, c\}$. Then |S| = 3.
- (b) Let A be the set of outcomes when rolling one die. Then n(A) = 6.

Cardinality of a Union

Question 1. How can we calculate $n(A \cup B)$ if we know n(A) and n(B)? Give an initial guess and then try the next example.

Example 2. Let $A = \{a, b, c\}$ and $B = \{b, c, d\}$. Find n(A), n(B) and $n(A \cup B)$. Was your guess correct? If not, what needs to be changed?

Cardinality of a Complement

Question 2. Let S be a finite universal set containing A. Give an initial guess for n(A').

Example 3. Let S be the possible outcomes of rolling a single die. Let A be the subset of S which contains all rolls strictly greater than 2. Find n(A), n(S) and n(A'). Was your guess correct?

Cardinality of a Cartesian Product

If A and B are sets, then $n(A \times B) = n(A) \cdot n(B)$. **Example 1.** Let S be the sample space when rolling a single die. Let A be the event that an odd number is rolled.

- (a) What is the cardinality of $S \times S$ and what does it represent?
- (b) What is the cardinality of $A \times A$ and what does it represent?
- (c) What is the cardinality of $S \times A$ and what does it represent?

DeMorgan's Laws Let A_1, A_2, \ldots, A_n be sets.

- 1. $(A_1 \cup A_2 \cup \cdots \cup A_n)' = A'_1 \cap A'_2 \cap \cdots \cap A'_n$
- 2. $(A_1 \cap A_2 \cap \dots \cap A_n)' = A'_1 \cup A'_2 \cup \dots \cup A'_n$